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Abstract

Merely observing activity in distributed systems is challenging: even an
observer’s location influences its interpretation of messages notifying it
of significant events in the network. Various event timestamping mecha-
nisms have been proposed to help overcome this effect. This tutorial firstly
identifies those problems that may arise when relying on the arrival or-
der of notifications. It then critically examines four timestamping models
in terms of how well they solve the observability problems, thus providing
insight into their practical abilities.
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Introduction

Testing and debugging a distributed system presents the programmer with pro-
found challenges: merely observing what is happening in a network of processes is
difficult. In this tutorial I review the issues and then use this characterisation to
critically analyse the power of timestamp-based solutions, thus providing insight
into the expressibility of different time models.
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Definitions

The effects discussed in this article usually manifest themselves in distributed
systems, that is, those in which there are a number of communicating, spatially-
separated processors. However, the concepts are applicable to any system ex-
hibiting concurrency, or the appearance of two or more events occurring simul-
taneously, including multiprocessor machines and uniprocessor multi-tasking.

No assumptions are made about the nature of events occurring in the system
other than to note that they represent discrete actions meaningful to the pro-
grammer. They may be the execution of single machine instructions or entire
procedures; the level of granularity is unimportant.

For brevity in this presentation assume that asynchronous message-passing
is the only medium for interprocess communication in the system under test—
senders do not block and messages are buffered until a receiver requests one
(but fifo queuing is not necessarily assumed). However, the concepts extend
straightforwardly to other forms of communication, such as synchronous message-
passing, shared memory, remote procedure calls or rendezvous.

The motivating concern is the observability problem in distributed systems.
This is the difficulty of attempting to determine the order in which events oc-
curred during a given computation (i.e., a single ‘execution’ or ‘run’ of the system,
definable by the particular set of control paths followed on this occasion). Let us
adopt causality , the ability of one event to affect another, as the basis for defin-
ing event order because it allows us to reason independently of any particular
time-frame [10].

An observer of a distributed system is any entity that attempts to examine a
computation. Observers may be human programmers, watching an animated dis-
play of system activity, or other processes in the network, automatically analysing
system activity. As shown in Figure 1, observers may watch the system ‘live’,
while the computation is in progress, or examine a post-mortem event log or trace.
In each scenario the observer must be informed whenever interesting events oc-
cur. In practice this involves instrumenting the system under observation with
probes that send notification messages to the observer (or write entries into the
log) following the occurrence of such events.

The concern in this article is to review how accurate a view of system activity
is presented to the observer by these notifications. I assess a number of proposed
methods of event timestamping. These provide a way of associating a number
with each event that can be included in the notification messages and used by
the observer to assess event orderings.

As a simple running example, let us use the computation shown in Figure 2. It
shows a system consisting of two parallel processes P and Q . Process P performs
two events. First, event a denotes the transmission of a message. P then performs
an action local to itself, denoted b. Process Q also performs two events, denoted
c and d , the first of which is the reception of the message sent by P .
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Figure 1: Observers of events e and f in a distributed computation.
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Figure 2: A distributed computation.
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It is important to note that, in the absence of any further information, this
same computation can be redrawn as shown in Figure 3. Here the same events
occur in the same relative local orders. Only the omnipotent viewpoint provided
by such diagrams allows us to know that independent events b and c are inter-
leaved differently; processes P and Q cannot ‘see’ any difference. Lamport [10]
discusses this equivalence in depth.

Fundamental observability effects

When an observer relies on the arrival order of notification messages to determine
event orderings in a distributed system, four types of discrepancies can arise.

Multiple observers see different orderings

Whenever there are two or more observers of a particular computation they may
each perceive different event orderings. In Figure 4 two observers O and R are
notified of the occurrence of events b and c (notification messages are shown as
dashed arrows). Due to the transmission delays associated with the messages,
observer O believes that event b occurred before event c, whereas observer R
sees event c occur before event b. Both interpretations are valid, but they cannot
be easily reconciled. (There is an obvious parallel with spacetime physics—the
observer’s location determines its view of the universe.)

Incorrect perceived orderings

More seriously, the perceived event ordering may simply be incorrect. In Figure 5
observer R erroneously believes that event c occurred before event a. Such an
effect may be caused by notifications being delayed due to retries or being routed
to the observer through indirect pathways.

Same computation exhibits different orderings

When testing or debugging a system the programmer typically wants to replay
the same computation several times in order to study different aspects of its
behaviour. Unfortunately an observer may see different event orderings at each
replay!

Figure 6 shows two different instances of the same computation: in both
cases processes P and Q perform exactly the same events in the same relative
orders (a then b and c then d). In the first instance observer O sees event c
occur before event b, but in the second instance (involving the same program,
supplied with the same data, and following the same control paths) the observer
sees b occur before event c. This nondeterministic behaviour during debugging
may be due to minor differences in the processor and link loads caused by other
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Figure 5: Incorrect perceived ordering.
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system activity and may occur even when the system being observed is performing
a deterministic computation! This can be a major source of frustration when
debugging distributed systems because previously observed ordering errors may
vanish, even though a replay mechanism is being used.

Arbitrary orderings adopted

Relying on the arrival time of notifications to determine event orderings also
means that arbitrary orderings are assumed between unrelated events. In Fig-
ure 7 observer O first sees that event a occurred before event c. This is a valid
observation in the sense that a must occur before c in this computation. Observer
O then sees event c occur before event b. This perceived ordering is merely an
artefact of the notification mechanism. As shown by comparing Figures 2 and 3,
events b and c are independent in this computation and may occur in either or-
der (in a global sense of time). This is a serious problem because such arbitrary
orderings are indistinguishable from genuine ‘enforced’ orderings and thus inhibit
the observer’s ability to know if the same event orderings will be maintained in
future tests. During debugging, a programmer observing c preceding b may mis-
takenly conclude that this program has sufficient interaction between processes
P and Q to always maintain this relationship.

Effectiveness of timestamping

To accurately observe behaviour in a distributed system more information is
needed than just the arrival order of notifications. An obvious approach is to
timestamp the events of interest and send this information to the observer in the
notification messages. The observer can then use these values to determine the
true order in which events occurred.

The remainder of this section critically analyses the ability of four different
timestamping mechanisms to resolve the observability effects described above.
Table 1 summarises the results; a ‘X’ indicates that the proposed timestamping
mechanism satisfactorily overcomes the effect process distribution may have on
observability.

Local real-time clocks

An obvious approach is to make use of whatever real-time clock is available in the
hardware of each processor as the source of timestamps. All notification messages
then have the same time value associated with each distinct event. This means
that all observers see the same time orderings, thus avoiding the first effect.
Unfortunately the others persist. Figure 8 shows two possible ways in which
the events in our example computation may be timestamped. Since the clocks
on different processors are not synchronised they will inevitably drift, so it is
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Figure 6: Same computation exhibits different orderings.
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Figure 7: Arbitrary orderings adopted.

Ordering mechanisms
Real-time Logical

timestamps timestamps
arrival local global totally partially

Effects ordering clocks clock ordered ordered
Multiple observers see
different orderings

X X X X

Incorrect perceived
orderings

X X X

Same computation
exhibits different orderings

X X

Arbitrary orderings
adopted

X

Table 1: Effectiveness of timestamping mechanisms.
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sidebar: A closed-world assumption

For the logical timestamping mechanisms discussed in this article to ac-
curately model event relationships two conditions are essential.

• All processes in the system under observation must participate in
the timestamping algorithm.

• All forms of interaction between processes must be times-
tamped [4].

If any process does not propagate timestamps correctly, or if the processes
can interact through some covert channel, e.g., the file system, that is
not timestamped, then the clock values may not accurately reflect causal
relationships [10].

Conversely, a passive observer process must not participate in the time-
stamping algorithm if it is to be unintrusive. If the observer propagates
timestamps it receives in notification messages, then the mere act of noti-
fying the observer creates detectable causal relationships that would not
exist in the observer’s absence.

not meaningful to compare times across machine boundaries. Incorrect orderings
may therefore be seen; on the left of Figure 8 the clock on P ’s processor is ahead
of that of Q so event c erroneously appears to occur before event a. Also, each
instance of the same computation may receive different timestamps, as shown by
the two scenarios in Figure 8. Finally, the ordering between independent events,
such as b and d in Figure 8, is randomly influenced by processor loads and the
(in)ability of the clocks to remain synchronised.

A global real-time clock

As an improvement let us assume that the clocks are synchronised throughout the
distributed system to a high degree of accuracy, in effect providing a global refer-
ence for real time. This avoids the effect of incorrect orderings being perceived;
time readings become meaningful across processor boundaries and hence always
reflect the actual order of event occurrence. Nevertheless, as shown by Figure 9,
the same computation may still yield different orderings if system loads vary
between tests, and arbitrary orderings are still imposed on independent events.

It is perhaps surprising that such a powerful facility as global real time, which
is expensive to achieve, still fails to satisfy our needs. To answer the question
of whether one event must precede another in a particular computation with
certainty an unbounded number of tests would be required!
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Figure 8: Real-time timestamps using (unsynchronised) local clocks.
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Figure 9: Real-time timestamps using a global clock.
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Totally ordered logical clocks

The issues remaining above are due to the use of absolute time to order events.
These values are randomly influenced by factors such as processor loads and
the time at which each process is started. As a solution to this, logical clocks
have been proposed as a more objective ordering mechanism. A simple system
of logical clocks can be used to totally order the events in a distributed system
using the following rules [10]:

• each process maintains an integer counter,

• whenever a process performs an event of interest it increases its counter
value,

• whenever a process sends a message the current counter value is ‘piggy-
backed’ on the message, and

• whenever a process receives a message it sets its own counter to be greater
than its current value and that of the piggybacked value received.

Figure 10 shows the totally ordered timestamps associated with each event
in our example computation, assuming that the counters start from zero and are
incremented by one at each event occurrence. The values for events a and b
are obvious. The receive event c, however, is given timestamp 2, rather than 1,
because it must have a higher value than the corresponding send event.

The timestamps thus generated are not unique, as shown by events b and c.
The total ordering is completed by adopting an arbitrary, but consistent, ordering
among the processes when two events have the same timestamp [10].

This mechanism has the same advantages as global real-time clocks and also
precludes the possibility of the same computation producing different orderings.
The timestamps are consistently associated with each event no matter how many
times the computation is replayed, regardless of differences in absolute timing
(assuming the algorithm for increasing timestamps is deterministic). This is an
important advantage during testing and debugging because it avoids the need
to re-perform the same computation in order to see if different orderings are
observable. (A nondeterministic program may still generate several distinct com-
putations from the same input data, however.) For this reason, and the ease
of implementing them, totally ordered logical clocks have been used in many
distributed debugging systems.

One issue remains however. An arbitrary ordering is still imposed on indepen-
dent events. An observer relying on the timestamps in Figure 10 will mistakenly
conclude that b always occurs before d , even though there is no interaction be-
tween processes P and Q to guarantee this. This misleading view will thwart
any attempts to identify problems stemming from inadequate synchronisation
between events.
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Figure 10: Logical timestamps using a totally ordered clock.
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Figure 11: Logical timestamps using a partially ordered clock.
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Partially ordered logical clocks

The ordering of events defined by totally ordered clocks is an incomplete view of
event causality. However a straightforward extension allows all causal orderings to
be preserved. Partially ordered logical clocks can be maintained as follows [6, 11]:

• each process maintains an array of counters, with one element in the array
for every process in the distributed system,

• whenever a process performs an event of interest it increases its own counter
value in its array,

• whenever a process sends a message the array of counters is piggybacked
on the message, and

• whenever a process receives a message it sets each element in its own array to
be the maximum of the current value of the element and the corresponding
element in the piggybacked array received.

Figure 11 shows how our example would be timestamped. Processes P and Q
both maintain an array of two counters. In each array the first counter value
represents the number of events known to have occurred in process P and the
second value represents the number of events known to have occurred in process
Q . (This example has a fixed number of processes, but the concept extends to
dynamic process creation [6].)

The entire array forms the timestamp. When comparing two such timestamps
we can conclude that some event e, occurring in process i , preceded some event
f , occurring in process j , only if

1. event f ’s timestamp has a counter value for process i greater than or equal
to the counter for process i in event e’s timestamp, and

2. event e’s timestamp has a counter value for process j strictly less than that
for process j in event f ’s timestamp.

The second condition avoids reflexivity [10] and allows for the case of synchronous
message-passing where corresponding send and receive events are treated like a
single joint action and receive the same timestamp [6]. A simpler test is available
if we know that only asynchronous message passing will be used [11].

For instance, in Figure 11 we can conclude that event a preceded event d
because d knows of the occurrence of 1 event in process P , as does a, but a does
not know of as many events (0) in process Q as d (2). Similarly we know that c
preceded d because d knows of more events in process Q (2) than does c (1).

These observations can also be achieved using totally ordered clocks. However,
where the totally ordered model assumed that b preceded d , the partially ordered
model does not. We cannot show that b precedes d because b knows of more
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events (2) in process P than does d (1). Furthermore, we cannot show that d
precedes b either because d knows of more events occurring in process Q (2) than
does b (0). An observer can therefore make use of these timestamps to determine
that events b and d are unordered ; they are independent actions that (in global
time) may occur in either order, or even simultaneously.

This capability overcomes the last of our outstanding observability effects (see
Table 1). Partially ordered clocks reflect only ‘true’ causal orderings and make
the absence of ordering explicit.

Discussion

Synchronous notifications

Many of the observability effects defined above stemmed from unpredictable de-
lays between the time events occurred in the distributed system and the time the
observer received a notification. It is therefore tempting to assume that using
synchronous communication between the system and its observer(s) will avoid
these effects. Unfortunately, as shown in Figure 12, the problems persist. (Infor-
mation is still being sent from processes P and Q to O , but the double-headed
arrows denote the bidirectional causality relation that results from synchronous
communication.)

It is still possible for the arrival time of notifications to incorrectly reflect event
orderings. In Figure 12 process P is delayed after performing event a, perhaps
due to contention for the processor, before it can send the event notification to
O . Consequently, the notification for event c arrives before that of its causal
predecessor a. Also, arbitrary orderings are still imposed, as is the case between
b and d . Similarly, multiple observers may see different orderings and the same
computation may yield different observations.

Intrusive observers

Thus synchronous notification messages cannot solve our observability problems.
Even worse, synchronous notification introduces a form of probe effect (see side-
bar) in which the mere act of observing the system alters its behaviour! (Again
there is a parallel with quantum physics.)

This manifests itself in two ways. Firstly, processes which wish to notify the
observer are effectively blocked until the observer deigns to communicate with
them. This may alter real-time behaviour and nondeterministic choices in the
system under observation. Also, any bias on the observer’s part about which
system processes it ‘prefers’ to communicate with will influence their ability to
proceed.

Secondly, the bi-directional causality relationship defined by synchronous com-
munication creates new causal orderings that would not exist in the absence of
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sidebar: The probe effect

An issue often associated with, but distinct from, the observability prob-
lem is the probe effect (sometimes referred to as the ‘Heisenberg effect’ by
aspiring physicists). This is the danger that auxiliary code added by a de-
bugger will alter the behaviour of a concurrent program under study [5].
Whereas the observability problem concerns the ability to study a par-
ticular computation, the probe effect concerns the ability to perform a
given computation in the first place. The probe effect may make existing
errors vanish, by preventing certain erroneous computations from occur-
ring, or may cause new errors to appear, by allowing computations not
possible in the original program. Many systems take extreme measures in
an attempt to avoid the probe effect, typically by trying to account for
the time occupied by the auxiliary code [1, 15]. Unfortunately it has long
been recognised that software-based debugging utilities inevitably intro-
duce some degree of intrusiveness [14]. (Customised hardware can be used
to unintrusively monitor a system [12] but this is expensive and inflexible.)

The probe effect manifests itself by

• changing the probability of making particular nondeterministic
choices,

• altering real-time execution speeds,

• changing access patterns to inadequately protected shared mem-
ory, or

• making a program augmented with debugging probes distinguish-
able from the unaugmented program.

A commonly-suggested solution is to permanently install debugging
probes so that the program undergoing debugging is the same as the final
‘production’ version [12, 5, 8, 7], albeit with a penalty in terms of run-time
overheads. (This approach has the benefit of leaving debugging ‘hooks’
in an operational system for tracking down infrequent errors that eluded
the testing and debugging phases, but such access points may also be a
security hazard!)

the observer. In Figure 13 each event is followed by a notification message. After
receiving notification of event b in process P , the observer interacts with process
Q , to receive notification of event c. This creates a causal link between P and Q ,
via the observer O , that means that event b potentially causally affects event d !
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sidebar: Reproducibility

It is important to clearly distinguish the probe effect from the difficulty
of achieving reproducibility while observing concurrent software. Having
seen the system perform some behaviour of interest, programmers need
reproducibility to force this particular computation to occur again for
closer inspection. However the problem of achieving reproducibility exists
for any program that makes nondeterministic choices, regardless of the
presence or absence of debugging probes, and can be treated using meth-
ods quite distinct from those proposed to overcome the probe effect [12].
These include recording traces for later replay [5] or giving the program-
mer explicit control over nondeterministic alternatives [9]. (Interestingly,
the third ‘effect’ described in this article can be overcome by including the
observer itself in a trace-based reproducibility mechanism.) Practical de-
bugging problems attributed to the probe effect are, quite often, actually
manifestations of the difficulty of achieving reproducibility.

sidebar: Using logical clocks to control computations

This tutorial focusses on the use of timestamping to passively observe
activity in a distributed computation. However timestamps are also used
to control activity. In particular, for systems maintaining replicated data,
partially ordered logical clocks have been used to implement

• causally-ordered communication, in which update messages are de-
livered in an order consistent with the causal order in which they
were sent, and

• totally-ordered communication, in which multicast updates are
guaranteed to be delivered to all recipients in the same order.

Many experimental systems following these principles exist, the most well-
known being the ISIS distributed system toolkit [2].

Interestingly, the same observability issues are relevant in this context.
These communication models are implemented by delaying receipt of a
message until those messages that must precede it have been received, as
determined by the timestamps. Thus every receiving process acts as an
‘observer’ in this case.



www.manaraa.com

O

d

c

b

a

QP
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Figure 13: Intrusiveness due to synchronous notifications.
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This is easily demonstrable by following arrows from b to d in Figure 13.

Conclusion

We have reviewed a number of mechanisms intended to give observers a view
of the order in which events occur in a distributed computation. It was shown
that partially ordered logical clocks are the only one capable of fully indicating
ordering between events; all other timestamping mechanisms may misleadingly
impose orderings between independent events.

This is not to say that partially ordered logical clocks are the only mechanism
that should be used. They are notoriously expensive to implement [4]; the size
of the array must be as great as the number of parallel processes [3]. Many
schemes have been suggested for reducing their cost but all involve either some
loss of causality information [6] or merely trade off storage requirements against
communication and processing overheads [13]. Nevertheless, programmers using
other timestamping mechanisms need to appreciate the limitations of the method
used and understand that they are receiving an incomplete view of event ordering.
Partially ordered clocks can then be used to give the complete picture when
necessary.

sidebar: Partially ordered logical clocks: A personal perspec-
tive

This research began in the mid-80’s with the author’s own attempt to
debug a parallel program. The program drew a complex diagram on a
graphics terminal. This was done using several processes, each in charge
of their own portion of the screen, presided over by a controller process
which initialised and closed the display surface. The program was found
to occasionally crash towards the end of the run, seemingly at random.
Poor synchronisation between the controller and its subordinates in the
final stages of the execution was suspected but none of the debugging tools
then available was capable of giving a view of system behaviour adequate
to confirm this suspicion. (Ultimately it transpired that the problem was
caused by the controller process performing its closing actions after re-
ceiving a ‘finished’ message from just one of its subordinates, instead of
waiting for them all.) The frustrations encountered in this exercise led me
to develop partially ordered logical clocks [6] as a model that can detect
the absence of ordering. Indeed, there seemed to be a strong need for such
a mechanism; several other researchers independently developed the same
model to solve their own observability problems [13].
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